The ratio is the measured transformer turns ratio (TTR), calculated using both the voltage applied to one side of the transformer and the induced voltage measured on the other. Calculated TTR is determined from the transformer's nameplate voltages and the k factor, if necessary, as given in the table below. With the measured TTR in hand, a percentage deviation from the calculated TTR can be computed, either manually or automatically by the TTRU3. As per IEEE, the percentage deviation between measured and calculated TTR should be within a ±0.5 % tolerance.
Nameplate ratio to voltage ratio recalculationTransformer configurations / vector groups | TVR recalculation factor (k), TVR=k*TNR |
---|
Dd | 1 |
Dy | √3 |
Dyn | √3 |
Dz | 1.5 |
Dzn | 1.5 |
Yd | √3/2 |
YNd | 1/√3 |
Yy | 1 |
YNy | 1 |
Yyn | 1 |
YNyn | 1 |
Yz | √3/2 |
YNz | √3/2 |
Yzn | √3 |
YNzn | √3 |
Zd | 1 |
ZNd | 2/3 |
Zy | √3/2 |
ZNy | 1/√3 |
Zyn | 1 |
ZNyn | 1 |
IEEE documents cases of transformers that have a load tap changer in their low voltage side with an overall low number of turns that will cause some of the tap steps not having the same number of turns as others. Thus, the variation per tap is not uniform and might be outside the 0.5 % tolerance of deviation from nameplate values. In these cases, there are two criteria used to evaluate the results. First, the measured TTR at both extreme ends of the tap changer (highest and lowest) should be within the 0.5 % tolerance from the calculated TTR. Second, for any given tap, all three phases of the transformer should have the same voltage ratios.