CÓMO SE MIDE LA RESISTENCIA DE AISLAMIENTO

23 Octubre 2024

Cómo funciona un equipo de pruebas de aislamiento

El equipo de pruebas de aislamiento de Megger® es un instrumento portátil que proporciona una lectura directa de la resistencia de aislamiento en ohmios, megaohmios, gigaohmios o teraohmios (según el modelo seleccionado) independientemente del voltaje de prueba seleccionado. En un buen aislamiento, la resistencia generalmente se encontrará en el rango de los megaohmios o superiores. El equipo de pruebas de aislamiento de MEGGER es básicamente un medidor de resistencia (ohmímetro) de rango alto, con un generador de CC incorporado.

El generador del instrumento, el cual se puede operar manualmente por manivela, batería o por línea, desarrolla un alto voltaje de CC que genera varias corrientes pequeñas a través y sobre las superficies del aislamiento bajo prueba. La corriente total es medida por el ohmímetro, que posee una escala de indicación analógica, lectura digital o ambas.

Componentes de la corriente de prueba

Si se aplica un voltaje de prueba a través de una porción de aislamiento, mediante la medición de la corriente resultante y aplicando la Ley de Ohm (R = E / I), se puede calcular la resistencia de aislamiento. Por desgracia, circula más de una corriente, lo cual tiende a complicar el análisis.

Corriente de carga capacitive

Estamos familiarizados con la corriente requerida para cargar la capacitancia del aislamiento bajo prueba. Esta corriente es inicialmente grande pero su duración es relativamente corta, disminuyendo exponencialmente a un valor cercano a cero a medida que el objeto bajo prueba se carga. El material de aislamiento se carga de la misma manera que un dieléctrico en un capacitor.

Corriente de absorción o polarización

La corriente de absorción está compuesta en realidad de hasta tres componentes, que decaen con velocidad decreciente a un valor cercano a cero, a lo largo de un periodo de varios minutos.

La primera es ocasionada por una deriva general de electrones libres a través del aislamiento por efecto del campo eléctrico.
La segunda es ocasionada por distorsión molecular por la que el campo eléctrico impuesto distorsiona la carga negativa de las capas de electrones que circulan alrededor de los núcleos hacia el voltaje positivo.

La tercera se debe a la alineación de moléculas polarizadas dentro del campo eléctrico aplicado, ver figura 1. Esta alineación es casi aleatoria en un estado neutro, pero cuando se aplica un campo eléctrico, estas moléculas polarizadas se alinean con el campo en un mayor o menor grado

Figura 1: Alineación de moléculas polarizadas

En general se considera a las tres corrientes como una sola corriente y son afectadas principalmente por el tipo y las condiciones del material de unión usado en el aislamiento. Si bien la corriente de absorción se aproxima a cero, el proceso tarda mucho más que con la corriente capacitiva.

La polarización por orientación se incrementa con la presencia de humedad absorbida, dado que los materiales contaminados están más polarizados. Esto incrementa el grado de polarización. La despolimerización del aislamiento también lleva a un incremento en la corriente de absorción.

No todos los materiales poseen los tres componentes y, de hecho, materiales como el polietileno exhiben poca o ninguna absorción por polarización.

Corriente de fuga superficial

La corriente de fuga superficial ocurre porque la superficie del aislamiento está contaminada con humedad o con sales. La corriente es constante con el tiempo y depende del grado de ionización presente, que a su vez depende de la temperatura. Con frecuencia se la ignora como una corriente separada y se incluye con la corriente de conducción como la corriente de fuga total.

Corriente de conducción

La corriente de conducción es estable a través del aislamiento y generalmente se la representa por un resistor de valor muy alto en paralelo con la capacitancia del aislamiento. Es un componente de la corriente de fuga, la cual es la corriente que se medirá cuando el aislamiento esté totalmente cargado y se haya producido la absorción total. Nótese que incluye la fuga superficial, que puede reducirse o eliminarse por el uso del terminal de protección (que se analizará más tarde).

La gráfica de la figura 2 muestra la naturaleza de cada una de las componentes de corriente con respecto al tiempo.

Figura 2: Componentes de la corriente de prueba

La corriente total es la suma de estas componentes. (La corriente de fuga se muestra como una corriente.) Esta es la corriente que se puede medir directamente con un microamperímetro o, en términos de megaohmios para un voltaje definido, con un equipo de pruebas de aislamiento de MEGGER. Algunos instrumentos ofrecen las alternativas de mostrar una medición en términos de corriente o como una resistencia. 


Debido a que la corriente total depende del tiempo que se aplica el voltaje, la Ley de Ohm (R = E / I) solo se cumple, teóricamente, para un tiempo infinito (lo que implica esperar para siempre antes de tomar una lectura). También es muy dependiente del arranque desde un nivel base de descarga total. Por lo tanto, el primer paso en cualquier prueba de aislamiento consiste en asegurar que el aislamiento esté completamente descargado.

Observe que: La corriente de carga desaparece relativamente rápido a medida que se carga el equipo bajo prueba. Llevará más tiempo para cargar unidades grandes, que presentan mayor capacitancia. Esta corriente almacena energía y por razones de seguridad, debe descargarse después de la prueba. Afortunadamente, la descarga de esta energía ocurre relativamente rápido. Durante la prueba, la corriente de absorción decrece a una velocidad relativamente lenta, según la naturaleza exacta del aislamiento. Esta energía almacenada también debe liberarse al final de la prueba, y requiere mucho más tiempo para descargarse que la corriente de carga de la capacitancia.